315t ACM International Collegiate

@ Programming Contest, 2006-2007
’ Asia Region, Tehran Site

Sharif University of Technology, 14-15 Dec. 2006

Problem A. Team Arrangement

Barry Bennett, the coach of the Bings football team, wants to arrange his team for an important match against the
Bangs. He decides on the formation he wants to play, for example 4-4-2, meaning that there will be four defenders, four
midfielders, and two strikers (and of course, one goalkeeper). Your task is to determine the players who will play. For
each available player, we know his role (e.g. midfielder). For each role, the players are selected in ascending order of
their numbers. When the players are selected, you must determine the captain too, who is the player with the longest
record in the team play. In case two players have the same record, the one with bigger number is chosen. Note that the
captain is chosen among the players that are selected in the arrange.

Input (filename: A.in)

The input consists of multiple test cases. The first 22 lines of each test case contain the data for the 22 available players
in this format: number name role year;—year'; year.—year'; ...

number is the player number (unique positive integer less than 100). name is a string of at most 20 letters. role is a
single character among G, D, M, S, for goalkeeper, defender, midfielder, and striker respectively. Each year; —year'; pair
(year; <year';) shows the player has been a member of the team between the specified years (inclusive). The years are
in four-digit format. There is at least one and at most 20 such pairs, and the same year is not repeated more than once in
the list. There is a 23 line describing the desired formation, like 4-4-2 in that format. Note that there are only three
numbers in the formation (so, 4-3-2-1 is not valid), none of them is zero, and their sum is always 10. The input is
terminated by a line containing a single 0.

Output (Standard Output)

For each test case, output a list of 11 players chosen in the arrange. Each line must contain the player number, his name
and his role, separated by single blank characters. The players must be sorted according to their role, in the order of
goalkeeper, defenders, midfielders, and strikers. The players with the same role are sorted according to ascending order
of their numbers. There is an exception that the captain always comes as the first player in the entire list. If it is not
possible to arrange the team conforming to the desired formation, write a single line containing IMPOSSIBLE TO
ARRANGE in the output. There should be a blank line after the output for each test case.

Sample Input and Output

A.in Standard Output
9 PlayerA M 2000-2001 2003-2006 7 PlayerM S
2 PlayerB M 2004-2006 15 PlayerP G
10 PlayerC D 2001-2005 1 PlayerD D

1 PlayerD D 2000-2001 2002-2004 3 PlayerU D
11 PlayerE S 2003-2006 6 PlayerI D
8 PlayerF M 2005-2006

22 PlayerG S 2005-2006 10 PlayerC D

25 PlayerH G 2000-2001 2002-2003 2005-2006 2 PlayerB M
6 PlayerI D 2003-2006 4 PlayerV M
26 Playerd D 2003-2004 2000-2001 8 PlayerF M
18 PlayerK M 2003-2004 9 PlayerA M
19 PlayerL M 2000-2001 2003-2006 5 PlayerR S

7 PlayerM S 2003-2006 1999-2001
21 PlayerN S 2003-2006

13 PlayerO S 2005-2006

15 PlayerP G 2001-2006

14 PlayerQ D 2003-2004

5 PlayerR S 2000-2005

20 PlayerS G 2000-2002 2003-2003
12 PlayerT M 2004-2005

3 PlayerU D 2000-2005

4 PlayerV M 2001-2004

4-4-2

0

Problem A- Page 1 of 1

315t ACM International Collegiate

@ Programming Contest, 2006-2007
Asia Region, Tehran Site

Sharif University of Technology, 14-15 Dec. 2006

Problem B. Barbara Bennett's Wild Numbers

A wild number is a string containing digits and question marks (like 362128). A number X matches a wild number W
if they have the same length, and every non-question mark character in X is equal to the character in the same position
in W (it means that you can replace a question mark with any digit). For example, 365198 matches the wild number
36?1728, but 360199, 361028, or 36128 does not. Write a program that reads a wild number W and a number X
from input, both of length n, and determines the number of n-digit numbers that match W and are greater than X.

Input (filename: B.in)

There are multiple test cases in the input. Each test case consists of two lines of the same length. The first line contains
a wild number W, and the second line contains an integer number X. The length of input lines is between 1 and 10
characters. The last line of input contains a single character #.

Output (Standard Output)

For each test case, write a single line containing the number of n-digit numbers matching W and greater than X (n is the
length of W and X).

Sample Input and Output

B.in Standard Output
362128 100
236428 0
8?3 4
910
?
5
#

Problem B- Page 1 of 1

315t ACM International Collegiate

@ Programming Contest, 2006-2007
Asia Region, Tehran Site

Sharif University of Technology, 14-15 Dec. 2006

Problem C. Calculating Taxi Fare

The rules for calculating the taxi fares are quite complex. Many factors are to be considered in computing the taxi fares,
including the length of the trip, the time of the day, the speed, etc. Every morning Bianca Bennett uses taxi to get to her
office, she thinks if taximeters are programmed correctly. One day, she decided to write a program to calculate the taxi
fares to check this.

Imagine a taxi passes through a sequence of streets S, Sy, ..., Sy in order. The length of S; is Lj and it is assumed that the
taxi travels in a constant speed and it takes M; minutes to travel one kilometer in S;. To make it simple, assume the
passenger gets in at the start of a street S; and gets out at the end of the destination street S;j (i.e., he does not get in or out
in the middle of a street). The passenger is charged for each kilometer of the trip. The first ten kilometers of the trip cost
1000 Rials each. The next 20 kilometers (from 11 to 30) cost 250 Rials each. After that, each kilometer costs 100 Rials.

During the night, the fare is increased by 20%. The rule is that for each kilometer, if the taxi travels at least one minute
during the time interval [12 AM, 6 AM], that kilometer will cost 20% more. Since driving in a heavy traffic costs more,
if the average speed of the taxi is less than 30 km/h during the whole trip, the fare is increased by 10%.

Input (filename: C.in)

The input consists of multiple test cases. The first part of each test case is the sequence of streets the taxi travels. This
comes in several lines, each describing one street in the form of street-name length min. street-name is a unique string
of at most 20 letters and digits with no blank in it, and length and min are two positive integer numbers which are L;
(measured in kilometers, at most 200) and M; (measured in minutes) respectively. Each street is visited once by the taxi.
The first part of the test case is terminated by a line containing a single $ character. The second part of the test case
contains a single line of the form source-street dest-street time. The first two items are the names of the source and the
destination streets respectively. The third item is the time the passenger gets in which is in standard 24-hours format
(HH:MM). There is a line containing a single # character at the end of each test case. You may assume that the source
and the destination streets belong to the input sequence of streets and the destination street does not come before the
source street. The last line of the input contains two dash characters as shown in the sample input.

Output (Standard Output)

For each test case, output a line containing the fare of the passenger's trip.

Sample Input and Output

C.in Standard Output

Khayyam 10 35 21758
15thKhordad 50 15 36432
Pamenar 15 40

$

Khayyam Pamenar 07:15
#

Jenah 10 40

Nouri 50 70

Hemmat 30 25

Chamran 80 80
ValieAsr 30 20

S

Nouri ValieAsr 23:30
#

Problem C- Page 1 of 1

315t ACM International Collegiate

@ Programming Contest, 2006-2007
Asia Region, Tehran Site

Sharif University of Technology, 14-15 Dec. 2006

Problem D. Party at Hali-Bula

Dear Contestant,

(w going to have a party at my villa at Hall-Bula to celebrate my retivement
from BCM, | wish t could invite all wmy co-workers, but tmagine how an
employee can enjoy a party when he finds his boss among the guests! So, |
decide not to invite both an employee and his/her boss. The organizational
hierarchy at BCM is such that nobody has wmort thaw one boss, and there is one
and only one employee with no boss at all (the Big Boss)! Can t ask You to
please write a program to determing the maximum nwmber of guests so that no
employee s tnvited when his/her boss is tnvited too? tve attached the list of
employees and the organizational hierarchy of BCM,

Best,
-—-Brian Bennett

P.S, 1 would be very grateful if your prograe can indicate whether the list of
people is uniquely deterined if 1 choose to tnvite the maximum nunmber of
guests with that condition,

Input (filename: D.in)

The input consists of multiple test cases. Each test case is started with a line containing an integer n (1 < n < 200), the
number of BCM employees. The next line contains the name of the Big Boss only. Each of the following n-1 lines
contains the name of an employee together with the name of his/her boss. All names are strings of at least one and at
most 100 letters and are separated by blanks. The last line of each test case contains a single 0.

Output (Standard Output)

For each test case, write a single line containing a number indicating the maximum number of guests that can be invited
according to the required condition, and a word Yes or No, depending on whether the list of guests is unique in that
case.

Sample Input and Output

D.in Standard Output

6 4 Yes
Jason 1 No
Jack Jason
Joe Jack
Jill Jason
John Jack
Jim Jill

2

Ming

Cho Ming

0

Problem D- Page 1 of 1

315t ACM International Collegiate

@ Programming Contest, 2006-2007
Asia Region, Tehran Site

Sharif University of Technology, 14-15 Dec. 2006

Problem E. Against Mammoths

Back to year 3024, humans finally developed a new technology that enables them to conquer the alien races. The new
technology made it possible to produce huge spaceships known as Saber Tooth spaceships as powerful as the aliens'
defending mammoths. At that time, humans ruled several planets while some others were under control of the aliens.
Using Saber Tooth ships, humans finally defeated aliens and this became the first Planet War in history. Our goal is to
run a simulation of the ancient war to verify some historical hypotheses.

Producing each spaceship takes an amount of time which is constant for each planet but may vary among different
planets. We call the number of spaceships each planet can produce in a year, the production rate of that planet. Note
that each planet has a number of spaceships in it initially (before the simulation starts). The planets start producing
ships when the simulation starts, so if a planet has n ships initially, and has the production rate p, it will have n + p ships
at the beginning of year 1, and n + i x p ships at the beginning of year i (years are started from zero).

Bradley Bennett, the commander in chief of the human armies, decided a strategy for the war. For each alien planet A,
he chooses a corresponding human planet P, and produces spaceships in P until a certain moment at which he sends all
spaceships in P to invade the planet A. No alien planet is invaded by two human planets and no human planet sends its
spaceships to two different alien planets.

The defense power of the alien planets comes from their powerful mammoths. Each alien planet contains a number of
mammoths initially and produces a number of mammoths each year (called the production rate of the planet). When a
fight between spaceships and mammoths takes place, the side having the greater number of troops is the winner. If the
spaceships win, the alien planet is defeated. In case the number of mammoths and spaceships are equal, the spaceships
win.

The difficulty with planning this strategy is that it takes some time for the spaceships to reach the alien planets, and
during this time, the aliens produce mammoths. The time required for spaceships to travel from each human planet to
each alien planet is known. The ships can leave their planets only at the beginning of years (right after the ships are
produced) and reach the alien planets at the beginning of years too (right after the mammoths are produced).

As an example, consider a human planet with two initial spaceships and production rate three invading an alien planet
with two initial mammoths and production rate two. The time required to travel between the two planets is two years
and the ships are ordered to leave at year one. In this case, five ships leave the human planet. When they reach the alien
planet, they confront eight mammoths and will be defeated during the fight.

Bennett decided to prepare a plan that destroys every alien planet in the shortest possible time. Your task is to write a
program to generate such a plan. The output is the shortest possible time (in years) in which every alien planet is
defeated.

Input (filename: E.in)

There are multiple test cases in the input. The first line of each test case contains two numbers H and A which are the
number of planets under the control of humans and aliens respectively (both between 1 and 250). The second line of the
test case contains H non-negative integers ny my n; my ... ny my. The number n; is the initial number of Saber Tooth
spaceships in the i human planet and m; is the production rate of that planet. The third line contains A non-negative
integers which specify the initial number of mammoths and the production rate of the alien planets in the same format
as the second line. After the third line, there are H lines each containing A positive integers. The j™ number on the it"
line shows how many years it takes a spaceship to travel from the i" human planet to the jt" alien planet. The last line of
the input contains two zero numbers. Every number in the input except H and A is between 0 and 40000.

Output (Standard Output)

The output for each test case contains a single integer which is the minimum time in which all alien planets can be
defeated. If it is impossible to destroy all alien planets, the output should be IMPOSSIBLE.

Problem E- Page 1 of 2

Sample Input and Output

E.in Standard Output

ONDNDDNDDNDDN
N W
(@]
w

Problem E- Page 2 of 2

315t ACM International Collegiate

@ Programming Contest, 2006-2007
Asia Region, Tehran Site

Sharif University of Technology, 14-15 Dec. 2006

Problem F. Chessboard Dance

Another boring Friday afternoon, Betty the Beetle thinks how to amuse herself. She goes out of her hiding place to take
a walk around the living room in Bennett's house. Mr. and Mrs. Bennett are out to the theatre and there is a chessboard
on the table! "The best time to practice my chessboard dance,” Betty thinks! She gets so excited that she does not note
that there are some pieces left on the board and starts the practice session! She has a script showing her how to move on
the chessboard. The script is a sequence like the following example:

C Q)
move 2

turn right

move 3

turn left

turn left

move 1

N O

At each instant of time Betty, stands on a square of the chessboard, facing one of the four directions (up, down, left,
right) when the board is viewed from the above. Performing a "move n" instruction, she moves n squares forward in her
current direction. If moving n squares goes outside the board, she stays at the last square on the board and does not go
out. There are three types of turns: turn right, turn left, and turn back, which change the direction of Betty. Note that
turning does not change the position of Betty.

If Betty faces a chess piece when moving, she pushes that piece, together with all other pieces behind (a tough beetle
she is!). This may cause some pieces fall of the edge of the chessboard, but she doesn't care! For example, in the
following figure, the left board shows the initial state and the right board shows the state after performing the script in
the above example. Upper-case and lower-case letters indicate the white and black pieces respectively. The arrow
shows the position of Betty along with her direction. Note that during the first move, the black king (r) falls off the right
edge of the board!

c c
p A t p A t
D »| T Plr D T|P
a|P P a P

p d C p d C|l*
p R R

P

p

You are to write a program that reads the initial state of the board as well as the practice dance script, and writes the
final state of the board after the practice.

Input (filename: F.in)

There are multiple test cases in the input. Each test case has two parts: the initial state of the board and the script. The
board comes in eight lines of eight characters. The letters r, d, t, a, ¢, p indicate black pieces, R, D, T, A, C, P indicate
the white pieces and the period (dot) character indicates an empty square. The square from which Betty starts dancing is
specified by one of the four characters <, >, ~, and v which also indicates her initial direction (left, right, up, and down
respectively). Note that the input is not necessarily a valid chess game status.

The script comes immediately after the board. It consists of several lines (between 0 and 1000). In each line, there is
one instruction in one of the following formats (n is a non-negative integer number):

Problem F- Page 1 of 2

move N

turn left
turn right
turn back

At the end of each test case, there is a line containing a single # character. The last line of the input contains two dash
characters.

Output (Standard Output)

The output for each test case should show the state of the board in the same format as the input. Write an empty line in
the output after each board.

Sample Input and Output

F.in Standard Output

Problem F- Page 2 of 2

315t ACM International Collegiate

@ Programming Contest, 2006-2007
Asia Region, Tehran Site

Sharif University of Technology, 14-15 Dec. 2006

Problem G. Bribing FIPA

There is going to be a voting at FIPA (Fédération Internationale de Programmation Association) to determine the host
of the next IPWC (International Programming World Cup). Benjamin Bennett, the delegation of Diamondland to FIPA,
is trying to seek other delegation’s support for a vote in favor of hosting IWPC in Diamondland. Ben is trying to buy the
votes by diamond gifts. He has figured out the voting price of each and every country. However, he knows that there is
no need to diamond-bribe every country, since there are small poor countries that take vote orders from their respected
superpowers. So, if you bribe a country, you have gained the vote of any other country under its domination (both
directly and via other countries domination). For example, if C is under domination of B, and B is under domination of
A, one may get the vote of all three countries just by bribing A. Note that no country is under domination of more than
one country, and the domination relationship makes no cycle. You are to help him, against a big diamond, by writing a
program to find out the minimum number of diamonds needed such that at least m countries vote in favor of
Diamondland. Since Diamondland is a candidate, it stands out of the voting process.

Input (filename: G.in)

The input consists of multiple test cases. Each test case starts with a line containing two integers n (1 < n < 200) and m
(0 <m < n) which are the number of countries participating in the voting process, and the number of votes Diamondland
needs. The next n lines, each describing one country, are of the following form:

CountryName DiamondCount DCName; DCName; ...

CountryName, the name of the country, is a string of at least one and at most 100 letters and DiamondCount is a
positive integer which is the number of diamonds needed to get the vote of that country and all of the countries that
their names come in the list DCName; DCName; ... which means they are under direct domination of that country. Note
that it is possible that some countries do not have any other country under domination. The end of the input is marked
by a single line containing a single # character.

Output (Standard Output)

For each test case, write a single line containing a number showing the minimum number of diamonds needed to gain
the vote of at least m countries.

Sample Input and Output

G.in Standard Output

32 20
Aland 10

Boland 20 Aland
Coland 15

#

Problem G- Page 1 of 1

315t ACM International Collegiate

@ Programming Contest, 2006-2007
Asia Region, Tehran Site

Sharif University of Technology, 14-15 Dec. 2006

Problem H. Treasure of the Chimp Island

Bob Bennett, the young adventurer, has found the map to the treasure of the Chimp Island, where the ghost zombie
pirate LeChimp, the infamous evil pirate of the Caribbeans has hidden somewhere inside the Zimbu Memorial
Monument (ZM?). ZM? is made up of a number of corridors forming a maze. To protect the treasure, LeChimp has
placed a number of stone blocks inside the corridors to block the way to the treasure. The map shows the hardness of
each stone block which determines how long it takes to destroy the block. ZM? has a number of gates on the boundary
from which Bob can enter the corridors. Fortunately, there may be a pack of dynamites at some gates, so that if Bob
enters from such a gate, he may take the pack with him. Each pack has a number of dynamites that can be used to
destroy the stone blocks in a much shorter time. Once entered, Bob cannot exit ZM? and enter again, nor can he walk on
the area of other gates (so, he cannot pick more than one pack of dynamites).

The hardness of the stone blocks is an integer between 1 and 9, showing the number of days required to destroy the
block. We neglect the time required to travel inside the corridors. Using a dynamite, Bob can destroy a block almost
immediately, so we can ignore the time required for it too. The problem is to find the minimum time at which Bob can
reach the treasure. He may choose any gate he wants to enter ZM?2.

Input (filename: H.in)

The input consists of multiple test cases. Each test case contains the map of ZM? viewed from the above. The map is a
rectangular matrix of characters. Bob can move in four directions up, down, left, and right, but cannot move diagonally.
He cannot enter a location shown by asterisk characters (*), even using all his dynamites! The character (s) shows the
location of the treasure. A digit character (between 1 and 9) shows a stone block of hardness equal to the value of the
digit. A hash sign (#) which can appear only on the boundary of the map indicates a gate without a dynamite pack. An
uppercase letter on the boundary shows a gate with a pack of dynamites. The letter A shows there is one dynamite in the
pack, B shows there are two dynamite in the pack and so on. All other characters on the boundary of the map are
asterisks. Corridors are indicated by dots (.). There is a blank line after each test case. The width and the height of the
map are at least 3 and at most 100 characters. The last line of the input contains two dash characters (--).

Output (Standard Output)

For each test case, write a single line containing a humber showing the minimum number of days it takes Bob to reach
the treasure, if possible. If the treasure is unreachable, write IMPOSSIBLE.

Sample Input and Output

H.in Standard Output

*****#********* 1

*l...0 40080007 IMPOSSIBLE
X _kkk D *

I O S
G IR R S RGN

KxFHAXG, 56K

* *kk kKK *

CA*******

* k kkk
*$3~k~k
*‘2**

***#*

Problem H- Page 1 of 1

315t ACM International Collegiate

@ Programming Contest, 2006-2007
Asia Region, Tehran Site

Sharif University of Technology, 14-15 Dec. 2006

Problem I. Kadj Squares

In this problem, you are given a sequence Sy, Sz, ..., Sy Of squares of different sizes. The sides of the squares are integer
numbers. We locate the squares on the positive x-y quarter of the plane, such that their sides make 45 degrees with x and
y axes, and one of their vertices are on y=0 line. Let b; be the x coordinates of the bottom vertex of S;. First, put S; such
that its left vertex lies on x=0. Then, put S;, (i > 1) at minimum b; such that

a) bi>biiand

b) the interior of S; does not have intersection with the interior of S;...Si.1.

Sz

S1 Se

by by bs ' ba X
S3

The goal is to find which squares are visible, either entirely or partially, when viewed from above. In the example
above, the squares Si, Sz, and S have this property. More formally, S; is visible from above if it contains a point p, such
that no square other than S; intersect the vertical half-line drawn from p upwards.

Input (filename: Lin)

The input consists of multiple test cases. The first line of each test case is n (1 < n < 50), the number of squares. The
second line contains n integers between 1 to 30, where the i™ number is the length of the sides of S;. The input is
terminated by a line containing a zero number.

Output (Standard Output)

For each test case, output a single line containing the index of the visible squares in the input sequence, in ascending
order, separated by blank characters.

Sample Input and Output

I.in Standard Output

o1
—
I
=
w N

[y
N

ON W W

Problem I- Page 1 of 1

