
� 29th ACM International Collegiate
Programming Contest, 2004-2005
Asia Region, Tehran Site

Sharif University of Technology

1–3 Dec. 2004

Sponsored by� a
Problem A (Program filename: A.cpp, A.dpr, or A.java)

IOI Photos

Shaborz, Hoidin, Alssein, and Ayan, members of the Olandican IOI team attended the Fall
semester classes the same day they returned from IOI, Athens 2004. During their stay in Athens,
they took several pictures in different places and occasions like Hydra island, opening ceremony,
closing award ceremony, and city of Athens. But, being excited with their first university experi-
ence, they forgot about the pictures until the midterm recess, which has coincided with the ACM
Regional Contest days. They now want to make prints of the pictures and each of them makes his
own IOI album.

There are several negative rolls, and each contains photos of just a single place or occasion. There
may be more than one roll, containing pictures from the same place or occasion. Each roll may
have 36 negatives, numbered from 1 to 36. The team members and their friends want to order
photo prints. Shaborz is to collect all orders and collects a fixed amount of money per each photo
print. He makes a deal with a photo printing shop as follows and saves a good sum of money for
himself. Shaborz pays S Rials for each single print, but printing all photos of a single role costs
him R Rials, and printing all photos from all rolls in one order costs A Rials. Shaborz is provided
with a list of orders, and you are to minimize the overall printing cost. Note that to have the
minimum overall cost, Shaborz is allowed to print more photos than required.

Input (filename: A.in)

The first line of the input contains a single integer t (1 ≤ t ≤ 20) which is the number of test cases
in the input. Each test case starts with one line containing four integers: N (1 ≤ N ≤ 100), the
number of orders, S, R, and A, the costs of a single print, all prints from one roll, and all prints
of all rolls respectively. Then follows N lines, each representing an order from one of the clients
(team members and their friends). An order line contains a number of items separated by blank
characters. Each item is of the form PlaceName : RollNo : FromPhoto..ToPhoto. PlaceName is
the name of a place which is a string of at most 100 characters (case sensitive). RollNo specifies the
desired roll among several rolls for the PlaceName and is between 1 and 10 inclusive. FromPhoto

and ToPhoto are two numbers specifying the range of photos to be printed from the specified roll
(1 ≤ FromPhoto ≤ ToPhoto ≤ 36). You may assume there are at most 20 places. If there is only a
single photo required from a roll, the format may be simplified as PlaceName : RollNo : PhotoNo.
All costs are non-negative integers.

Output (filename: A.out)

For each test case, there should be one line containing one integer indicating the minimum cost
for printing all photos of the original order set.

Sample Input

1

2 15 100 400

Hydra:2:1..3 Athens:1:12

Delphi:1:4..5 Athens:3:20

Sample Output

105

1

� 29th ACM International Collegiate
Programming Contest, 2004-2005
Asia Region, Tehran Site

Sharif University of Technology

1–3 Dec. 2004

Sponsored by� a
Problem B (Program filename: B.cpp, B.dpr, or B.java)

ACM: Vice City

“Tommy, there will be a programming contest here in Vice City. One of the coaches

has stolen a copy of the problem set. The chief judge wants it back. Take out the coach

guy at his hotel and return the problems back. The address is taped under the phone.

Do it now!”

Not a tough job for you, Tommy Vercetti! Getting the mission at the pay phone, you must head off
the coach at WK Charriot Hotel before he leaves. You have to get there fast! Get there very fast
indeed! Unfortunately, the vehicle you start with may not run fast enough. But there are some
fixed locations in Vice City at which you can find certain vehicles, like Diaz’s Mansion where you
can find an Infernus. This way, you may change your vehicle on your way to hotel several times.
For example, in the first sample input, you ride from PayPhone to CarShowRoom on a PCJ600 and
drive the rest of the path in a HotRingRacer. Don’t forget that it takes one minute each time you
change your vehicle.

You are given the names of these locations in the city and the distances between each pair. At
each location you can find a certain vehicle anytime you get there. Knowing the top speed of each
vehicle, you want to find out the minimum time in which you can reach the hotel. For the sake of
simplicity, assume that you always drive at top speed of your vehicle.

Input (filename: B.in)

The first line of the input contains a single integer t (1 ≤ t ≤ 20) which is the number of test cases
in the input. Each test case has three parts. The first part consists of m lines (1 ≤ m ≤ 100)
of the form vehicle speed where vehicle is the unique name of a vehicle and speed is a positive
integer giving the top speed of the vehicle measured in Km/h.

The next part of the test case identifies the locations in the city and is separated from the first
part by exactly one blank line. It consists of n lines (2 ≤ n ≤ 500) of the form location vehicle

where location is the unique name of a location in the city and vehicle is the name of the vehicle
available in that location. The list of locations always includes the starting location PayPhone and
the destination WKCharriot.

The third part of the test case identifies the roads between locations and is separated from the
previous part by exactly one blank line. It consists of several lines of the form loc1 loc2 distance

indicating there is a (two-way) road of length distance between the locations loc1 and loc2. Dis-
tances are expressed in kilometers and are positive integers. The test case is terminated by a line
containing a single asterisk character (*).

All names (for vehicles and locations) are strings of at most 100 letters and digits with no space
characters and are considered case sensitive. Items in an input line are separated by one or more
space characters. Also, there may be arbitrary leading or trailing blanks except in empty lines
used as separators.

Output (filename: B.out)

For each test case, there is one line in the output containing the minimum time (in minutes)
you need to travel from PayPhone to WKCharriot, or the word UNREACHABLE if the destination is
unreachable from the starting point. Print the results as numbers with exactly three decimal digits
after decimal point. That is, the possible decimal digits after the third one should be ignored, and
if there are less than three digits after decimal point, zero digits should be printed for missing
digits.

1

Sample Input

2

Infernus 280

Cheetah 285

PCJ600 250

Stallion 180

HotRingRacer 300

Mansion Infernus

CarShowRoom HotRingRacer

VicePort Cheetah

NorthPointMall Infernus

PayPhone PCJ600

WKCharriot Stallion

PayPhone CarShowRoom 10

PayPhone VicePort 15

VicePort WKCharriot 20

CarShowRoom Mansion 15

Mansion WKCharriot 15

Mansion NorthPointMall 5

NorthPointMall WKCharriot 5

*

Caddy 80

MrWhoopie 60

Stretch 120

CubanHermes 160

Voodoo 170

CherryPoppy MrWhoopie

Mansion Stretch

PayPhone CubanHermes

LittleHaiti Voodoo

WKCharriot Caddy

PayPhone CherryPoppy 10

CherryPoppy LittleHaiti 15

Mansion WKCharriot 20

*

Sample Output

8.400

UNREACHABLE

2

� 29th ACM International Collegiate
Programming Contest, 2004-2005
Asia Region, Tehran Site

Sharif University of Technology

1–3 Dec. 2004

Sponsored by� a
Problem C (Program filename: C.cpp, C.dpr, or C.java)

Fixing Codes

A binary string is a string of characters from the set {0, 1}. A code is a multiset of binary strings
(i.e., a string can be repeated arbitrary number of times). A fixed code is a code that none of its
strings is a prefix of another string. We say that a code A = {a1, a2, . . . , an} is extended to code
B = {b1, b2, . . . , bn} if and only if for 1 ≤ i ≤ n, ai be a prefix of bi. The cost of this extension is
Σn

i=1
|bi| − |ai| where |ai| is the number of characters in ai.

For this problem you are given a fixed code C, and a new binary string s. You have to find the
minimum needed cost to extend the code C ∪ {s} into a fixed code. In other words, you are to
append the minimum number of bits to zero or more codes in C ∪ {s} to make it a fixed code.

Input (filename: C.in)

The first line of the input contains a single integer t (1 ≤ t ≤ 20) which is the number of test cases
in the input. For 1 ≤ i ≤ t the line i + 1 consists a nonzero number of binary strings. The number
of binary strings in each line is at most 41, and the length of each binary string is no more than 40
characters. The last string in each line stands for the new incoming string s and the other strings
in that line make the fixed code of the relevant test case.

Output (filename: C.out)

The output consists m lines. The solution to ith test case should be written in the line i of the
output.

Sample Input

2

001 01 00

000 001 010 011 100 101 110 1

Sample Output

1

2

1

29th ACM International Collegiate
Programming Contest, 2004-2005
Asia Region, Tehran Site

Sharif University of Technology

1–3 Dec. 2004

Sponsored by

Problem D (Program filename: D.cpp, D.dpr, or D.java)

Wiping Words

In this problem, you are given a paragraph of text in terms of a sequence of lines. Each lines
contains a number of words which are sequences of lowercase and uppercase letters and are sep-
arated by either blank characters or asterisks. A word is wiped out if for each character in that
word, there is no letter or asterisk character in the same position in the next line, or the word
appears in the last line of the input. If such a case happens, all occurrences of that word in the
text is converted to blanks independent of the corresponding characters in the next line. Note
that the asterisks and black characters never disappear. Also, note that the words are considered
case-sensitive. Write a program to read a sequence of lines described above and wipe out as many
word as it can iteratively.

Input (filename: D.in)

The first line of the input contains a single integer t (1 ≤ t ≤ 20) which is the number of test cases
in the input. Each test case contains a sequence of lines containing characters A..Z, a..z, blank
and asterisk (*). After each test case, there is a line containing single hash character (#) which is
not a part of the lines you must consider in your algorithm.

Output (filename: D.out)

For each test case, write the input lines in the output with the wiped out words converted to
blanks. The whitespace at the end of each line is ignored when evaluating your output. Separate
outputs for consecutive test cases with lines containing a single hash character.

Sample Input

2

ACM is

**

#

in this world

you are in*side

the world

*

#

Sample Output

ACM

**

#

you *

the

*

#

1

� 29th ACM International Collegiate
Programming Contest, 2004-2005
Asia Region, Tehran Site

Sharif University of Technology

1–3 Dec. 2004

Sponsored by� a
Problem E (Program filename: E.cpp, E.dpr, or E.java)

Food Cubes

The spacemen in the space shuttle are waiting for the next escape window to return to the mother
land Earth, where they are expected to fall somewhere in the deep blue waters of the Persian
Gulf. Bored of waiting with nothing to do, they decide to play a game with their unit size food
cubes. In the zero gravity environment of their spaceship, anything can stay motionless where it
is placed. One spaceman places several food cubes in space such that there may be holes between
cubes. Others, given the coordinates of the food cubes, should find the number of holes. A hole
is a continuous empty space surrounded by food cubes in all six directions. You are to write a
program to read the coordinates of each food cube and compute the number of holes.

Input (filename: E.in)

The first line of the input contains a single integer t (1 ≤ t ≤ 20) which is the number of test
cases in the input. Each test case starts with an integer M , the number of food cubes. Each line
i (1 ≤ i ≤ M) of the M following lines contains integers xi, yi and zi, all between 1 and 100
inclusive, indicating the three coordinates of a food cube in the 3D space.

Output (filename: E.out)

For each test case, there is one line containing the number of holes.

Sample Input

2

26

1 1 1

1 2 1

1 3 1

2 1 1

2 2 1

2 3 1

3 1 1

3 2 1

3 3 1

1 1 2

1 2 2

1 3 2

2 1 2

2 3 2

3 1 2

3 2 2

3 3 2

1 1 3

1 2 3

1 3 3

2 1 3

2 2 3

1

2 3 3

3 1 3

3 2 3

3 3 3

7

1 1 1

1 1 2

1 2 1

1 2 2

2 1 1

2 1 2

2 2 1

Sample Output

1

0

2

� 29th ACM International Collegiate
Programming Contest, 2004-2005
Asia Region, Tehran Site

Sharif University of Technology

1–3 Dec. 2004

Sponsored by� a
Problem F (Program filename: F.cpp, F.dpr, or F.java)

Points

Let p1, p2, . . . , pn be n points on the plane. We have m rules of form pi rel pj , each inform us
that the relation rel holds among the locations of points pi and pj on the plane. For example, “pi

NE pj” indicates that point pj is located NorthEast of point pi. There are eight different relations
{N, E, S, W, NE, NW, SE, SW}, corresponding to the eight directions on the plane. Let (xi, yi)
and (xj , yj) be the coordinates of pi, and pj respectively. Then pi rel pj exactly means one of the
following, depending on the value of rel:

1. N stands for North. This means that xj = xi and yj > yi,

2. E stands for East. This means that xj > xi and yj = yi,

3. S stands for South. This means that xj = xi and yj < yi,

4. W stands for West. This means that xj < xi and yj = yi,

5. NE stands for NorthEast. This means that xj > xi and yj > yi,

6. NW stands for NorthWest. This means that xj < xi and yj > yi,

7. SE stands for SouthEast. This means that xj > xi and yj < yi, and

8. SW stands for SouthWest. This means that xj < xi and yj < yi.

The problem is to determine whether it possible to locate p1, p2, . . . , pn on the plane so that all
given rules are satisfied.

Input (filename: F.in)

The first line of the input contains a single integer t (1 ≤ t ≤ 20) which is the number of test cases
in the input. The first line of each test case contains two integers n (2 ≤ n ≤ 500) which is the
number of points and m (1 ≤ m ≤ 104) which is the number of rules. In each of the following m

lines, there is one rule of the form i rel j which means that pi has relation rel with pj .

Output (filename: F.out)

The output contains one line per each test case containing one of the words POSSIBLE or IMPOSSIBLE
indicating if the set of points in the test case can be located on the plane according to the given
rules.

Sample Input

2

3 2

1 N 2

2 N 1

6 6

1 E 2

1 E 3

2 N 4

3 NW 5

1

4 SW 6

6 NE 5

Sample Output

IMPOSSIBLE

POSSIBLE

2

� 29th ACM International Collegiate
Programming Contest, 2004-2005
Asia Region, Tehran Site

Sharif University of Technology

1–3 Dec. 2004

Sponsored by� a
Problem G (Program filename: G.cpp, G.dpr, or G.java)

ACM-Telecom

ACM-Telecom provides communication services for international telephone calls. Cost of calling
a country (call rates), varies from one to another. The company maintains the rates in a cost table
mapping the country codes to call rates. Upon receiving a call, an automatic system determines
the country code by looking at the leftmost digits in the 8-digit dialed number and charges the
client according to the call rate of that country. More precisely, the automatic system maintains a
list of country codes sorted in decreasing order. Upon receiving a call, the system starts from the
top of the list and checks if the country code is a prefix of the dialed number. The first country
code satisfying this property is considered as the destination of the call and the client is charged
according to the call rate of that country. Note that the cost table covers every possible 8-digit
number dialed, i.e., every dialed number matches with some country code in the table. Given the
relatively high number of rows in the cost table and the increasing number of calls, the computation
of call rates has become a quite lengthy process. Your task is to find a new cost table with the
minimum number of rows such that the computed call costs for every possible (8-digit) dialed
number are the same as before.

Input (filename: G.in)

The first line of the input contains a single integer t (1 ≤ t ≤ 20) which is the number of test cases
in the input. Each test case starts with a line containing a single integer N(1 ≤ N ≤ 1000) which
is the number of rows in the cost table. Following the first line, there are N lines of the form code

cost where code is an integer between 1 and 9999 inclusive, and cost (1 ≤ cost ≤ 100) is a positive
integer which is the cost rate of the calls to the country code. There are no two lines with the same
country code in a test case.

Output (filename: G.out)

For each test case, there is one line in the output containing the minimum number of rows of the
table required to compute the costs correctly.

Sample Input

1

12

331 4

33 4

335 4

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

Sample Output

10

1

� 29th ACM International Collegiate
Programming Contest, 2004-2005
Asia Region, Tehran Site

Sharif University of Technology

1–3 Dec. 2004

Sponsored by� a
Problem H (Program filename: H.cpp, H.dpr, or H.java)

Prince of Persia

A new job for the well known Prince of Persia! Not surprisingly, Jafar, the treacherous vizier of the
king has put the daughter of the king in a cellar while he is away to visit a neighboring country.
The prince fights bravely with the guards on his way down to the cellar. Just one step to the
cellar, the prince enters a dark room containing the information to unlock the door of the cellar.
The information is carved on several stone plates installed in the walls of the room. Luckily, there
is a ray of light emanating through a tiny hole in one of the walls. There are a number of mirrors
in the room that the prince may use to direct the ray of light to illuminate a stone plate. Each
mirror may be placed in certain locations in the room without any change in its directions (i.e.,
angles with the walls). The question is, if the prince can illuminate every plate on the wall using
the mirrors.

To simplify the problem, we consider the room when viewed from above as a grid with n rows and
m columns. The bounding cells are walls of the room and the mirrors can be put in the interior
cells. No two mirrors can be placed in one cell. We have a number of mirrors available, each
allowed to be put in certain positions inside the room. The direction of each mirror is known in
advance and cannot be changed. To illuminate one plate, the prince must place a subset of mirrors
in their allowed positions such that the ray of light reaches the plate after reflections made by the
mirrors. The mirrors are opaque, meaning that the back-side of the mirrors absorbs the light. The
problem is to find whether he can illuminate all and each plate on the wall. Obviously, the plates
must be illuminated in turn since there is no way to fork the ray of light into multiple rays. When
illuminating a plate, he may use a different subset of mirrors in possibly different positions.

Input (filename: H.in)

The first line of the input contains a single integer t (1 ≤ t ≤ 20) which is the number of test cases
in the input. Each test case starts with zero or more lines each describing one mirror. A mirror
is described by a single digit which is its identifier, followed by exactly one blank character, and
one of the four character pairs -/, −\, /-, and \− indicating the mirror’s direction. The hyphen
character (-) determines the back-side of the mirror. For example, -/ indicates a mirror which
reflects the ray from the right to bottom and vice versa, but blocks the rays from the left or top.

After the mirror description lines, there are n lines each of length m characters which describe
the grid representing the room when viewed from the above ((2 ≤ m, n ≤ 40)). The walls of the
room (which are always in the boundary of the grid) are denoted by the hash signs (#). Those
cells of the wall which contain plates are represented by - and | for horizontal and vertical walls
respectively. The only cell in the boundary containing a blank character represents the hole from
which the light is emanated into the room. The light ray enters the room perpendicular to the
wall holding the hole. You may assume that the four cells in the corner always contain hash signs.
The interior cells of the grid are all filled by the dot character (.) except those that a mirror can
be placed into which are specified by digits. A mirror can be placed in a cell only if the digit of
the cell is the same as the mirror identifier.

Output (filename: H.out)

For each test case, there is one line in the output containing the word YES or NO indicating if all
plates in the input can be illuminated according to the problem conditions or not.

1

Sample Input

2

0 -/

1 /-

3 -/

5 \-

######-#####-#########

#....................#

|....................#

#.0..............3...#

#..........0.........#

#....................#

#....................#

#.....1....1.........#

#..........1..5......#

|....................#

|....................#

#....................#

#........1......1....#

#....................#

#....0......0........#

#..............3.....#

#...3................#

#...........3........#

#####--############

0 -/

1 /-

3 -\

####-##

#........#

#.3..0.1.#

|.1......#

##########

Sample Output

NO

YES

2

